
Padloc Cryptography Review

Open Technology Fund
August 23, 2019 – Version 1.1

Prepared for
Martin Kleinschrodt

Prepared by
Mason Hemmel
Ava Howell

©2019 – NCC Group

Prepared by NCC Group Security Services, Inc. for Open Technology Fund. Portions of this document
and the templates used in its production are the property of NCC Group and cannot be copied (in full or
in part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Executive Summary
Synopsis
In Spring of 2019, the Open Technology Fund1 engaged
NCC Group to conduct a cryptographic assessment
of the Padloc2 (formerly known as Padlock) password
manager application. This application is a cloud-based
password manager that allows for trustless, portable
access to passwords for both individual users and
organizations. Padloc uses cryptographic constructions
to protect the user’s vault data, even from the Padloc
organization and servers. A Password Authenticated
Key Exchange (PAKE)3 protocol is used to authenticate
clients and servers, in an attempt to minimize exposure
of the user’s password to any passive network attacker
or the server. The chosen protocol is Secure Remote
Password (SRP).4

This assessment focused solely on the cryptographic
primitives used by the application and not on the
application itself. Source code was provided along with
design documentation, and the assessment occurred
over two calendar weeks between April 22, 2019 and
May 3, 2019.

Scope
NCC Group’s evaluated the ncc-audit branch at
commit 0bf13ce4a9add1d34ab27febbbe4f6be40fa21
e9. Design documentation for the cryptographic
protocol was provided through the security whitepaper.
As requested, this evaluation was purely focused on
cryptographic issues found in the wider code, and
explicitly did not address any further application security
issues that the application may have had.

The scope of review included the client, server, and
shared “core” code, with the exception of any included
third-party functionality such as cryptography libraries.

Key Findings
The assessment uncovered a set of cryptographic flaws.
Some of the more notable were:

• Users Removed from Organizations Can Be
Silently Re-Added As discussed in finding NCC-
PadlocCryptoReview-013 on page 5, an attacker
may replay an organization owner’s signature over
a user’s public key to re-add them to a group from
which they had been removed. This could potentially
expose groups to credential exfiltration by a user who

appeared to have been barred from membership.
• Authentication Exposes SRP Verifier As discussed
in finding NCC-PadlocCryptoReview-011 on page 7,
the unnecessary exposure of an intermediate mathe-
matical value can allow a network attacker to perform
a dictionary attack against the user’s passphrase. This
could potentially allow network attackers to crack
passwords for users with passwords of weak to
moderate strength.

Strategic Recommendations
• Consider evaluating OPAQUE SRP is known to
have a relatively weak security proof. One of the
properties of SRP, which is explicitly not desired
for the security of the Padloc system, is that it
is vulnerable to pre-computation attacks (see find-
ing NCC-PadlocCryptoReview-009 on page 19) as well
as dictionary attacks in the case where the verifier v is
compromised (see finding NCC-PadlocCryptoReview-
011 on page 7). There is a newer PAKE design
known as OPAQUE,5 which is not vulnerable to pre-
computation attacks and provides a much stronger
security proof. OPAQUE represents a solid improve-
ment on the security properties provided by SRP and
may warrant consideration for a future iteration of the
Padloc authentication scheme.

• Consider Transitioning Node Cryptography to
node-sodium Currently, server-side cryptography is
built on Node.js’s crypto module, which provides
an abstraction over OpenSSL’s cryptographic
hash functions as well as their symmetric and
asymmetric cryptographic primitives. However,
this library is both lower-level and lower assurance
than ideal for applications programming. By
contrast, the node-sodium library, a Node.js port
of libsodium, implements desired higher-level
functionality correctly out-of-the-box. As an example,
instead of requiring developers to “roll their own”
authenticated encryption from a set of primitives,
node-sodium directly exposes a pair of functions
called crypto_box_easy and crypto_box_open_
easy that require minimal further integration or
implementation.

1https://www.opentech.fund/
2https://padloc.app
3https://en.wikipedia.org/wiki/Password-authenticated_key_agreement
4http://srp.stanford.edu/design.html
5https://eprint.iacr.org/2018/163.pdf

2 | Padloc Cryptography Review

https://github.com/padlock/padlock/commits/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9
https://github.com/padlock/padlock/commits/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9
https://github.com/padlock/padlock/blob/ncc-audit/security.md
https://github.com/paixaop/node-sodium
https://github.com/paixaop/node-sodium
https://www.opentech.fund/
https://padloc.app
https://en.wikipedia.org/wiki/Password-authenticated_key_agreement
http://srp.stanford.edu/design.html
https://eprint.iacr.org/2018/163.pdf

Dashboard
Target Metadata
Name Padloc
Type Cloud Password Manager
Platforms Node.js, TypeScript
Environment Local Instance

Engagement Data
Type Cryptography Assessment
Method Code-Assisted
Dates 2019-04-22 to 2019-05-03
Consultants 2
Level of effort 15 person-days

Targets
Source Code https://github.com/padlock/padlock/commits/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9

Finding Breakdown

Critical Risk issues 0
High Risk issues 1
Medium Risk issues 2
Low Risk issues 6
Informational issues 5
Total issues 14

Category Breakdown
Cryptography 9
Data Exposure 1
Timing 3
Other 1

Component Breakdown
Server & Client 6
Server 7
Documentation 1

Key
Critical High Medium Low Informational

3 | Padloc Cryptography Review

https://github.com/padlock/padlock/commits/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 21.

Title Status ID Risk
Removed Organization Members Can Be Silently Re-Added Fixed 013 High
Unnecessary Exposure of SRP Verifier v in Protocol Round Fixed 011 Medium
Member and Organization Signatures Use an Ambiguous Encoding Fixed 014 Medium
Non-Constant-Time Group Operations Not Fixed 001 Low
Non-Constant Time HMAC Verification in Server Fixed 005 Low
Short AES-GCM Tag Length Fixed 006 Low
Non-Constant-Time Comparison of Session Key Hash M1 Fixed 008 Low
Padloc Server Can Execute a Dictionary Attack on Users’ Master
Passwords

Risk Accepted 010 Low

Non-Constant-Time Comparison over Trusted Device IDs Fixed 012 Low
Small Order Groups Supported Fixed 002 Informational
Server Crypto Provider Uses Userland CSPRNG for Cryptographic
Randomness

Reported 004 Informational

Missing Check for a,b > log[g] N in Key Generation Not Fixed 007 Informational
SRP is Vulnerable to Pre-Computation Attacks Risk Accepted 009 Informational
Symmetric Encryption Not Performed According to Specification Reported 015 Informational

4 | Padloc Cryptography Review

Finding Details
Finding Removed Organization Members Can Be Silently Re-Added

Risk High Impact: High, Exploitability: Low

Identifier NCC-PadlocCryptoReview-013

Status Fixed

Category Cryptography

Component Server & Client

Location packages/core/src/org.ts

Impact By compromising the server and replaying an organization owner’s signature, an attacker
may be able to silently re-add users who were previously removed from an organization’s
accessor list, gaining access to the associated vault’s password data.

Description Under Padloc’s “Shared-Key Encryption” scheme, multiple vault users can share access to
an encrypted vault by providing their public key through the Padloc key exchange protocol.
This public key is then signed with the organization owner’s private RSA key, authorizing the
member’s presence inside the organization’s accessor list:

// packages/core/src/org.ts

// ...snip...

/**

* Signs the `member`s public key, id, role and email address so they can be
verified later
*/

async sign(member: OrgMember): Promise<OrgMember> {

if (!this.privateKey) {

throw "Organisation needs to be unlocked first.";

}

member.signature = await getProvider().sign(

this.privateKey,

concatBytes(

stringToBytes(member.id),

stringToBytes(member.email),

new Uint8Array([member.role]),

member.publicKey

),

this.signingParams

);

return member;

}

// ...snip...

These signatures are then verified by organization members using the owner’s public key to
provide assurance that the organization owner has authorized the member’s access. Once
the signature is verified, organization members send the added member the AES key for the
vault, encrypted with the member’s RSA public key.

The owner’s authorizing signature lacks protection against replay attacks. As such, the fol-
lowing attack is possible:

5 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/org.ts#L512

1. Attacker compromises the server. This is required in order to send a new signed accessor
list, and to record signatures. Server compromise is specifically permitted within the
Padloc threat model.

2. Alice joins an organization, successfully completing the key exchange protocol. The orga-
nization owner signs Alice’s public key, granting her access.

3. Alice leaves the organization. The organization owner removes her membership details
and broadcasts the update to the organization members.

4. Alice’s private key is compromised by an attacker, or Alice becomes an attacker.
5. The attacker replays the owner’s signature over Alice’s public key.
6. Organization members verify the signature provided by the attacker, it validates over

Alice’s public key.
7. The attacker is granted access to the organization, despite there being no explicit autho-

rization from the organization owner.

This attack is enabled by the lack of replay protections in place on organization owner sig-
natures; thus, past members can always re-add themselves to an organization, even after
having been evicted (as long as they control the members list). Additionally, if their role
changes, they can replay the signature to reset their role to their previous role.

Recommendation Each organization owner signature should contain a unique nonce, with each member of the
organization keeping track of the full set of existing nonces. If a client sees a repeated nonce
in the organization owner signature, it should consider the signature to be malformed. The
nonces should be randomly generated at a size of 4 bytes or longer. It may also be useful
for the organization owner to periodically send out signed “reminders” of the current set of
burned nonces; if this route is taken, the reminder should be signed and given a timestamp
for its period of validity to ensure that attackers cannot replay it.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc added a new field called updated to the organization member in commit cab32970c3
a7c93994a515f6531ddfe66338038c. This field is a monotonically increasing nonce, verified
to be greater than or equal to the recorded minMemberUpdated property of the Org object.
When members are removed from an organization, the owner re-signs all members and
sets the minMemberUpdated property of the organization as well as the updated property of
each user to the current UNIX time. With this change, attackers can not replay old member
signatures to re-add themselves to the organization, since the updated field of the replayed
member signature would be before minMemberUpdated and would be rejected. This will
successfully mitigate the vulnerability pointed out in this finding. NCC Group notes that the
team did not dynamically validate the fix for this finding due to the time limitations of the
retest.

6 | Padloc Cryptography Review

https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c

Finding Unnecessary Exposure of SRP Verifier v in Protocol Round

Risk Medium Impact: Medium, Exploitability: Low

Identifier NCC-PadlocCryptoReview-011

Status Fixed

Category Data Exposure

Component Server

Location packages/core/src/server.ts, ‘packages/core/src/auth.ts

Impact The password verifier value v is unnecessarily exposed during protocol execution, leading to
a significant deviation from the SRP specification. An attackermay perform an active attack to
learn verifiers and launch dictionary attacks. If the SRP implementation is executed without
TLS, a passive attacker can also execute a dictionary attack on the user’s passphrase.

Description During the server part of round 1 of the SRP protocol, the server sends a Padloc InitAu-
thResponse object to the client that contains the necessary server data called for in round 1
of SRP: the KDF parameters (in this case, salt and iteration count for PBKDF2), and the server’s
public key (B = kv+gb). In a correct implementation, this exchange does not allow a passive
or active attacker to execute a dictionary attack. However, Padloc’s InitAuthResponse object
also contains an auth object that carries the verifier field:

export class Auth extends Serializable implements Storable {

/** Id of the [[Account]] the authentication data belongs to */

account: AccountID = "";

/** Verifier used for SRP session negotiation */

verifier?: Uint8Array;

This violates the security properties of the SRP protocol, since now a theoretical passive
attacker has learned the value v = gx, where x = KDF (p), and the attacker can execute a
dictionary attack on the user’s passphrase with nothingmore than this information. An active
attacker can connect to the server and initiate the protocol to learn the user’s v and execute
a dictionary attack. In practice, the active attacker case is made more difficult in Padloc’s
application due to the fact that the attackermust pass the requirements noted in findingNCC-
PadlocCryptoReview-009 on page 19 to initiate the protocol. The passive attack case is mit-
igated in Padloc’s application implementation due to the fact that the protocol is executed
over TLS. This situation is analogous to if a traditional password hash based authentication
scheme loaded the user’s password hash into their login page.

Recommendation Exclude the verifier field from ever being sent on the wire during execution of the SRP au-
thentication protocol.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc successfully stripped the Auth object from InitAuthResponse, removing the ex-
posed verifier v in commit db5a9f9589e2fe4af39b6bf449c140769e683d53. This successfully
remediates the issue.

7 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/server.ts#L116
https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/auth.ts#L15
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/db5a9f9589e2fe4af39b6bf449c140769e683d53

Finding Member and Organization Signatures Use an Ambiguous Encoding

Risk Medium Impact: Undetermined, Exploitability: Medium

Identifier NCC-PadlocCryptoReview-014

Status Fixed

Category Cryptography

Component Server & Client

Location packages/core/src/encoding.ts

Impact An attacker may be able to produce member objects that validate for other members’ signa-
tures, despite having different semantic meaning.

Description The Padloc protocol uses RSA signatures and HMAC authentication tags for two crucial parts
of the system: verifying the identity of organization andmember public keys. In both of these
cases, the function concatBytes is used to encode the relevant data into a Uint8Array,
which is then signed. The implementation of concatBytes lacks a delimiter or any sort of
prefix for each of the elements:

/**
* Concatenates a number of Uint8Arrays to a single array

*/

export function concatBytes(...arrs: Uint8Array[]): Uint8Array {

const length = arrs.reduce((len, arr) => len + arr.length, 0);

const res = new Uint8Array(length);

let offset = 0;

for (const arr of arrs) {

res.set(arr, offset);

offset += arr.length;

}

return res;

}

As such, this encoding is ambiguous. Signatures produced for a given organization member
may be valid for other OrgMember objects. For example, if the member has the ID “XX”, email
“test@test.com”, role 0x1, and public key 0x2 (these are dummy values, in reality the public
key is an SPKI encoded RSA public key), then the signature for that member will also validate
for the member with ID “X”, email “Xtest@test.com”, role 0x1, and public key 0x2 since the
output of concatBytes for both of these objects is identical. In this sense, these signatures
are ambiguous. The impact of this finding is undetermined. Due to time constraints NCC
Group was unable to determine the full extent of the impact of this property on the security
of the Padloc scheme.

Recommendation Change to a non-ambiguous encoding method for signatures, such as ‘TLV’, or type-length-
value, where the type and length of each data piece is prepended.

Retest Results Padloc added a delimiter to the encoding scheme in commit fed40f1edd8485805d864ccb0
38412ef33ca256b, fixing this issue.

8 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/encoding.ts#L293
https://github.com/padlock/padlock/commit/fed40f1edd8485805d864ccb038412ef33ca256b
https://github.com/padlock/padlock/commit/fed40f1edd8485805d864ccb038412ef33ca256b

Finding Non-Constant-Time Group Operations

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PadlocCryptoReview-001

Status Not Fixed

Category Cryptography

Component Server & Client

Location packages/core/src/srp.ts

Impact An attacker may be able to learn information about private keys through timing-based side
channels.

Description Padloc includes an implementation of SRP used to authenticate users with the service. The
protocol implementation works over a finite field of large prime order GF (N). Operations
over this group are performed using the JavaScript jsbn ‘Big Integer’ arbitrary precision
arithmetic library:

/**
* Calculates verifier `v` from secret `x` according to the formula

* ```
* v = g ^ x % N

* ```
*/

v(x: BigInteger): BigInteger {

return this._params.g.modPow(x, this._params.N);

}

These BigIntegers are not instantiated with a modulus, indicating that their operations
cannot be constant-time. In practice, execution time for jsbn’s arithmetic was found to be
dependent on the inputs. This means that operations that depend on secret keys such as
the computation of SRP verifiers (v = gx), ephemeral public keys, and the eventual shared
session key, leak information about the secret keys through timing-based side channels.

Recommendation Consider compiling and utilizing a constant-time modular big integer implementation, such
as BearSSL’s i62.6 emscripten7 may be used to compile the library to run in a browser
environment; for the Node.js environment using native bindings will be sufficient.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

The code used to compute SRP group operations is unchanged.
6https://www.bearssl.org/gitweb/?p=BearSSL;a=tree;f=src/int;h=2fa2ff106f0cf006b83e705855c2f85bf7d76ece;hb
=8ef7680081c61b486622f2d983c0d3d21e83caad
7https://emscripten.org/

9 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/srp.ts#L319
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://www.bearssl.org/gitweb/?p=BearSSL;a=tree;f=src/int;h=2fa2ff106f0cf006b83e705855c2f85bf7d76ece;hb=8ef7680081c61b486622f2d983c0d3d21e83caad
https://www.bearssl.org/gitweb/?p=BearSSL;a=tree;f=src/int;h=2fa2ff106f0cf006b83e705855c2f85bf7d76ece;hb=8ef7680081c61b486622f2d983c0d3d21e83caad
https://emscripten.org/

Finding Non-Constant Time HMAC Verification in Server

Risk Low Impact: High, Exploitability: Low

Identifier NCC-PadlocCryptoReview-005

Status Fixed

Category Timing

Component Server

Location packages/server/src/crypto.ts

Impact An attacker-in-the-middle that can precisely measure the timing of the server’s HMAC verifi-
cation may authenticate requests posing as any user.

Description The server authenticates a client that has an existing account by verifying an HMAC over the
session details. The code for this verification is as follows:

private async _verifyHMAC(

key: HMACKey,

signature: Uint8Array,

data: Uint8Array,

params: HMACParams

): Promise<boolean> {

const sig = await this._signHMAC(key, data, params);

return signature.toString() === sig.toString();

}

The server verifies the HMAC by using its copy of the key to generate the correct HMAC, then
uses a string comparison of this known-good HMAC with the one supplied by the user. The
comparison function used (===) short-circuits comparison and will immediately stop after
hitting the first difference between the two HMACs. An attacker that can make extremely
accuratemeasurements of this processmay use the server’s verification function as an oracle,
creating a statistical model to differentiate between correct and incorrect characters in an
HMAC. This allowing the attacker to forge the correct HMAC character-by-character.

The real-world likelihood of this attack is uncertain. First, the attacker would have to create
this timing model within the acceptable window of a given timestamp. Second, the machine-
level comparison of words tends to occur in 32- or 64-bit words, which deeply limits the
effectiveness of this oracle. Nevertheless, it is possible.

Recommendation Padloc can remove this timing window entirely by comparing cryptographic hashes of the
HMACs against each other instead of comparing them directly (i.e. SHA256(server_hmac)
?= SHA256(client_hmac)). The collision-resistance property of the cryptographic hash im-
plies that the risk of accepting an incorrect HMAC value is negligibly small, while its preimage-
resistance property guarantees that any timing leakage will not leak any information about
the underlying HMAC.

Retest Results Padloc added a function equalCT which performs a constant-time comparison and replaced
the usage of the default comparison operator in commit 46aea789856569e2e4fa24e171ca
85e0a933eb64, successfully remediating this issue.

10 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/ncc-audit/packages/server/src/crypto.ts#L121
https://github.com/padlock/padlock/commit/46aea789856569e2e4fa24e171ca85e0a933eb64
https://github.com/padlock/padlock/commit/46aea789856569e2e4fa24e171ca85e0a933eb64

Finding Short AES-GCM Tag Length

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PadlocCryptoReview-006

Status Fixed

Category Cryptography

Component Server & Client

Location packages/core/src/crypto.ts

Impact With sufficiently large Padloc vaults, an attacker will have a higher than expected probability
of successfully producing a forged vault without knowing the key.

Description The default authentication tag length for the AES-GCM encryption operations for Padloc
vaults is defined as 64 bits:

tagSize: 64 | 96 | 128 = 64;

While this tag length is appropriate for small messages, Padloc uses this default tag size to
encrypt all of the items in the vault. If the vault grows to a substantial size, the probability of
an attacker successfully forging an authentication tag increases,8 with a forgery succeeding
with approximate probability of n/2t (where n is the number of blocks and t is the bit size of
the authentication tag). Once the attacker successfully creates a forgery, they will learn in-
formation about the authentication key, potentially allowing them to forge further messages.
NIST guidance recommends amaximum combined ciphertext plus associated authenticated
data length of 215 for 64-bit tags.9 Vaults for large organizations could conceivably be larger
than this limit. Successfully creating a forgery requires an active attack: for every forgery
that an attacker creates, they must observe whether decryption by the key holder succeeds
over the forgery. Such an attack is not practical within Padloc’s architecture. While this attack
is unlikely to be practical, NCC Group recommends increasing the tag size to 128 bits as a
defense-in-depth measure and to conform with NIST guidelines.

Recommendation Deprecate 64-bit tags and change the default tag size to 128 bits.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc changed the default authentication tag size to 128 bits in commit a9c9447068816eb
15320cce7075802dbe066b9d9, successfully remediating this issue.
8https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/cwc-gcm/ferguso
n2.pdf
9https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

11 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/crypto.ts#L16
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/a9c9447068816eb15320cce7075802dbe066b9d9
https://github.com/padlock/padlock/commit/a9c9447068816eb15320cce7075802dbe066b9d9
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/cwc-gcm/ferguson2.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/cwc-gcm/ferguson2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Finding Non-Constant-Time Comparison of Session Key Hash M1

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-PadlocCryptoReview-008

Status Fixed

Category Timing

Component Server

Location packages/core/src/server.ts L148

Impact An attacker can learn information about the correct value of the authenticator M = SHA256(A,
B, K), allowing them tomore easily forge the authenticator and add their device as a trusted
device, bypassing email-based login verification.

Description Both parties in the SRP PAKE protocol used in Padloc compute a hash M1 in order to verify that
they have reached the same session key, successfully authenticating. This hash is computed
as SHA_256(A, B, K), where A and B are the ephemeral public keys, and K is the computed
session key. The client computes their M1 and sends it to the server; the server performs a
non-constant-time JavaScript string comparison over the value to authenticate the client.

// ...snip... packages/core/src/server.ts

// Get the pending SRP context for the given account

const srp = pendingAuths.get(account);

if (!srp) {

throw new Err(ErrorCode.INVALID_CREDENTIALS);

}

// Apply `A` received from the client to the SRP context. This will

// compute the common session key and verification value.

await srp.setA(A);

// Verify `M`, which is the clients way of proving that they know the

// accounts master password. This also guarantees that the session key

// computed by the client and server are identical an can be used for

// authentication.

if (bytesToHex(M) !== bytesToHex(srp.M1!)) {

throw new Err(ErrorCode.INVALID_CREDENTIALS);

}

The JavaScript string comparison operator (!==) exits early once the first difference between
the two compared strings is detected. This means it has a non-constant-time execution:
the execution time of the comparison depends on the contents of the two strings being
compared, not just their lengths. If an attacker can construct an accurate statistical model
of the timing of this string comparison, they can learn information about the correct M value
through this timing side-channel. This does not directly leak the value of K, the session key,
due to the security properties of the hash function chosen to compute M and M1 (SHA-256).
However, the attacker will be able to pass this authentication check, and add their device as
a trusted device:

12 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/server.ts#L148

// Create a new session object

const session = new Session();

session.id = await uuid();

session.account = account;

session.device = this.device;

session.key = srp.K!;

// ...snip...

// Add device to trusted devices

const auth = await this.storage.get(Auth, acc.email);

if (this.device && !auth.trustedDevices.some(({ id }) => id === this.dev
ice!.id)) {

auth.trustedDevices.push(this.device);

}

await this.storage.save(auth);

Such an attack may potentially lead to bypass of security mechanisms related to trusted
devices. Since the implementation does not remove the pendingAuth and demands a new
session on authentication failure, the attacker is free to call createSession repeatedly to
extract timing information about M.

Recommendation Change to a constant time comparison, or perform the comparison by taking SHA256(M)
!== SHA256(M1).

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc added a function equalCT, which performs a constant-time comparison and replaced
the usage of the default comparison operator in commit 46aea789856569e2e4fa24e171ca
85e0a933eb64, successfully remediating this issue.

13 | Padloc Cryptography Review

https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/46aea789856569e2e4fa24e171ca85e0a933eb64
https://github.com/padlock/padlock/commit/46aea789856569e2e4fa24e171ca85e0a933eb64

Finding Padloc Server Can Execute a Dictionary Attack on Users’ Master Passwords

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PadlocCryptoReview-010

Status Risk Accepted

Category Cryptography

Component Server

Location packages/core/src/srp.ts

Impact If an attacker compromises the Padloc server, they can execute a dictionary attack against
the users’ master passphrases using the stored SRP password verifier v.

Description The Padloc server model is described in the security whitepaper as follows:

This means that unlike other products, Padloc does not require explicit trust be-
tween the end user and the host…Even though v is based on p, it cannot be used
to guess the password in case someone eavesdrops on the connection or if the
server is compromised. See section 4 of the SRP specification for details.

However, since the Padloc server stores an SRP verifier v, the server can execute a dictionary
attack against a user’s authentication password. The attack would take the following form:

1. Attacker learns v as well as the key derivation function parameters (stored on the Padloc
server).

2. Attacker computes v′ = gKDF (p′), where the KDF is configured to use the parameters
retrieved from the server. p′ is the password guess, and v′ is the resulting potential verifier.

3. Attacker checks if v′ == v. If so, they have discovered that p == p′, and knows the user’s
passphrase. If not, repeat from 2.

The cost of each iteration of this dictionary attack is one invocation of the key derivation
function with the correct parameters (in this case, PBKDF2), and onemodular exponentiation.
Given the PBKDF2 parameters used in Padloc, this cost is moderate; however, it could be
made much more costly by utilizing a newer password-based key derivation function such as
scrypt10 or argon2.11

Recommendation This flaw is an unavoidable property of all PAKEs. As a defense-in-depth measure, SRP ver-
ifiers v should be treated as sensitive data that may be used to dictionary attack a user’s
passphrase. For example, verifiers should never be exposed to protocol participants such
as in finding NCC-PadlocCryptoReview-011 on page 7. Ensuring that users use high entropy
passphrases in addition to using a strong password hashing algorithm is of critical impor-
tance here, just as in a traditional authentication context. The documentation should be
updated to reflect this property.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Since this is an unavoidable property, it is still present. The documentation incorrectly states
that v cannot be used to guess the password in case of server compromise. The vulnerability
discussed in findingNCC-PadlocCryptoReview-011 onpage 7 has been remediated, and there
is no longer unnecessary exposure of v.
10https://tools.ietf.org/html/rfc7914
11https://tools.ietf.org/html/draft-irtf-cfrg-argon2-06

14 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/srp.ts
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c

Finding Non-Constant-Time Comparison over Trusted Device IDs

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PadlocCryptoReview-012

Status Fixed

Category Timing

Component Server

Location packages/core/src/server.ts

Impact An attacker may be able to gain information about the correct device IDs through a timing
side-channel, learning about the user’s device and gaining the ability to bypass email verifi-
cation and execute a pre-computation attack.

Description The Padloc server computes a boolean to determine if a given client is from a trusted device.
Devices are given unique identifiers, stored in the server’s auth construction for that user,
and then iterated over when requests are handled as a sort of authenticator:

// packages/core/src/server.ts

const deviceTrusted = auth && this.device && auth.trustedDevices.some(({
id }) => id === this.device!.id);

// ...snip...

if (!deviceTrusted) {

if (!verify) {

throw new Err(ErrorCode.EMAIL_VERIFICATION_REQUIRED);

} else {

this._checkEmailVerificationToken(email, verify);

}

}

Since the JavaScript === operator used to verify the request’s device ID does not operate in
constant time, the execution time of the request handler leaks information about valid device
IDs to an unverified, unauthenticated attacker. If the attacker learns a device ID, they can
bypass the requirement for email verification of logins, enabling them to initialize a session
and learn the user’s salt. This is enough to execute a pre-computation attack against the
user’s passphrase (see finding NCC-PadlocCryptoReview-009 on page 19).

Recommendation Perform this comparison in constant-time, or calculate SHA256(id) === SHA256(this.de
vice!.id)

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc added a function equalCT which performs a constant-time comparison and replaced
the usage of the default comparison operator in commit 46aea789856569e2e4fa24e171ca
85e0a933eb64, successfully remediating this issue.

15 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/server.ts#L90
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/46aea789856569e2e4fa24e171ca85e0a933eb64
https://github.com/padlock/padlock/commit/46aea789856569e2e4fa24e171ca85e0a933eb64

Finding Small Order Groups Supported

Risk Informational Impact: None, Exploitability: None

Identifier NCC-PadlocCryptoReview-002

Status Fixed

Category Cryptography

Component Server & Client

Location packages/core/src/srp.ts

Impact In the current design there is no practical impact; however, if in the future it becomes possible
for an attacker to select these smaller groups, the security of the SRP authentication scheme
will be reduced.

Description The SRP implementation used in Padloc supports the following group sizes:

type SRPGroupLength = 1024 | 1536 | 2048 | 3072 | 4096 | 6144 | 8192;

SRP reduces to the computational Diffie Hellman assumption. 1024-bit DH keys are known to
be insufficient and their discrete logmay be partially precomputed by a powerful adversary.12

The default group length for SRP clients and servers is 4096. It is not currently possible for
an adversary to downgrade to 1024. However, as a defense-in-depth measure, NCC Group
recommends removing all support for lower order groups so there is no possibility of such
an attack in the future.

Recommendation Only support larger SRP group sizes, 3072 and above.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc removed support for group lengths less than 3072 in commit d4a9a3e12eab517d67
b44c161ccf1b032afa4208.
12https://weakdh.org/

16 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/srp.ts#L415
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
https://github.com/padlock/padlock/commit/d4a9a3e12eab517d67b44c161ccf1b032afa4208
https://github.com/padlock/padlock/commit/d4a9a3e12eab517d67b44c161ccf1b032afa4208
https://weakdh.org/

Finding Server Crypto Provider Uses Userland CSPRNG for Cryptographic Randomness

Risk Informational Impact: None, Exploitability: None

Identifier NCC-PadlocCryptoReview-004

Status Reported

Category Cryptography

Component Server

Location packages/server/src/crypto.ts

Impact If this randomness is used in future development, Padloc will find itself unnecessarily depen-
dent on users’ instances of OpenSSL.

Description Currently, the Padloc server makes use of Node’s crypto.randomBytes() function. This
function makes use of the OpenSSL RAND_bytes() function to access the kernel’s crypto-
graphically secure pseudo-random number generator (CSPRNG) rather than making direct
use of it. While there are not necessarily any issues with the RAND_bytes() function, it
introduces an unnecessary source of risk while also removing any extra security protections
the kernel CSPRNG may provide. For instance, the OpenSSL random number generator is
not fork-safe below version 1.1.113 or thread safe by default.14

Recommendation Consider using a library such as node-sodium, which portably leverages kernel-level entropy.
This eliminates the unnecessary level of dependence on userland randomness while offering
access to well-written cryptographic functions.
13For more detail, see https://emboss.github.io/blog/2013/08/21/openssl-prng-is-not-really-fork-safe/.
14As per https://wiki.openssl.org/index.php/Random_Numbers#Thread_Safety, the library must be called with CRYP
TO_set_locking_callback.

17 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/app/src/crypto.ts#L23
https://github.com/paixaop/node-sodium
https://emboss.github.io/blog/2013/08/21/openssl-prng-is-not-really-fork-safe/
https://wiki.openssl.org/index.php/Random_Numbers#Thread_Safety

Finding Missing Check for a,b > log[g] N in Key Generation

Risk Informational Impact: None, Exploitability: None

Identifier NCC-PadlocCryptoReview-007

Status Not Fixed

Category Cryptography

Component Server & Client

Location packages/core/src/srp.ts

Impact There is no practical impact; however, this represents a divergence from the SRP specification.

Description The SRP protocol calls for the generation of two ephemeral private keys a,b, which are inte-
gers modulo the order of the protocol group (multiplicative subgroup of the field GF (N)).
Padloc’s implementation of SRP lacks a check that the ephemeral private keys are greater
than logg(N). This means that there is a probability< 2−t, where t is defined as the bit-size
of the modulusN , that a passive attacker can compute the algebraic logarithm of the public
keys A,B to discover the ephemeral private keys.

This has no practical implication since the supported modulus sizes are large enough that
the probability of such a public key is infinitesimal. However, the check is easy to add, is called
for in the SRP specification,15 and is a good defense-in-depth measure.

Recommendation When generating private keys for SRP, verify that they are greater than logg(N).

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

The code for this aspect remains unchanged.
15http://srp.stanford.edu/ndss.html#SECTION00044300000000000000

18 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/srp.ts#L331
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c
http://srp.stanford.edu/ndss.html#SECTION00044300000000000000

Finding SRP is Vulnerable to Pre-Computation Attacks

Risk Informational Impact: Medium, Exploitability: None

Identifier NCC-PadlocCryptoReview-009

Status Risk Accepted

Category Cryptography

Component Server

Location packages/core/src/srp.ts

Impact If an attacker is able to execute the first round of the SRP protocol with the server, they learn
enough information to pre-compute possibly valid passphrases for the targeted user.

Description Users are authenticated in Padloc using SRPv6, a PAKE protocol. One of the stated design
goals of the design is to resist dictionary attacks even if the connection is actively compro-
mised. However, due to the design of SRP, attackers can partially precompute password
candidates.

Padloc defines the first round of its authenticated key exchange protocol as follows:

1. Client sends u, the username identifier, which in this case is a valid email address, and A,
the client’s public key (ga).

2. Server sends the salt s and KDF parameters, in this case solely the iteration count i, to
the client for the requested u, in addition to the server’s public key B = kv + gb.

Since all of the information required to pre-compute candidate passwords for all Padloc users
is public, an adversary can execute the following costly attack:

1. Connect to the Padloc server repeatedly, requesting the s, i parameters for every known
user’s email addresses.

2. Compute, offline, potential verifiers for common passphrases by taking x = PBKDF2(s,
i, p) and computing vcandidate = gx.

3. Store candidate verifiers in a large lookup database. If the Padloc server is later compro-
mised and password verifiers are revealed, the attacker can leverage their precomputation
to quickly crack weak passphrases.

This is mitigated by Padloc’s requirement that either the device be trusted, or the user au-
thenticates via email the first stage of the SRP protocol.

Recommendation Require additional authentication for unauthenticated users to participate in the first roundof
the protocol. This is currently accomplished though the trusted device and email verification
method, which is sufficient.

Retest Results Retest Performed on July 5, 2019 on commit cab32970c3a7c93994a515f6531ddfe66338038c

Padloc did not change any code relating to this finding.

19 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/core/src/srp.ts
https://github.com/padlock/padlock/commit/cab32970c3a7c93994a515f6531ddfe66338038c

Finding Symmetric Encryption Not Performed According to Specification

Risk Informational Impact: None, Exploitability: None

Identifier NCC-PadlocCryptoReview-015

Status Reported

Category Other

Component Documentation

Location • security.md#symmetric-encryption
• security.md#simple-symmetric-encryption

Impact Usersmay be confused by the use of block encryptionmodes that differ from those discussed
in the whitepaper.

Description The Padloc security whitepaper notes multiple times that symmetric encryption only makes
use of AES in GCM mode. However, the low-level _encryptAES function16 clearly allows for
the use of CCM mode, as shown below:

private async _encryptAES(key: AESKey, data: Uint8Array, params: AESEncrypti
onParams): Promise<Uint8Array> {

if (params.algorithm === "AES-CCM") {

return SJCLProvider.encrypt(key, data, params);

}

const k = await webCrypto.importKey("raw", key, params.algorithm, false,
["encrypt"]);

try {

const buf = await webCrypto.encrypt(

{

name: params.algorithm,

iv: params.iv,

additionalData: params.additionalData,

tagLength: params.tagSize

},

k,

data
);

return new Uint8Array(buf);

} catch (e) {

throw new Err(ErrorCode.ENCRYPTION_FAILED);

}

}

CCM mode does not have any inherent security risks that make it unsuitable, but the imple-
mentation does not match the claims of the whitepaper.

Recommendation Padloc should either document the usage of CCMmode in thewhitepaper or edit out support
in this function.
16The relevant code for this snippet can be found at packages/app/src/crypto.ts

20 | Padloc Cryptography Review

https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/security.md#symmetric-encryption
https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/security.md#simple-symmetric-encryption
https://github.com/padlock/padlock/blob/0bf13ce4a9add1d34ab27febbbe4f6be40fa21e9/packages/app/src/crypto.ts#L117

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

21 | Padloc Cryptography Review

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

22 | Padloc Cryptography Review

	Executive Summary
	Synopsis
	Scope
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions

